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Abstract—Accurate neonatal brain MRI segmentation is valu-
able for investigating brain growth patterns and tracking the
progression of neurodevelopmental disorders. However, it is
a challenging task to use intensity-based methods to segment
neonatal brain structures because of small contrast differences
between brain regions caused by the inherent myelination pro-
cess. Although convolutional neural networks offer the potential
to segment brain structures in an intensity-independent manner,
they suffer from lack of in-plane long-range dependency which
is essential for the segmentation. To solve this problem, we
propose a novel Transformer-Weighted network (TW-Net) to
incorporate in-plane long-range dependency information. TW-
Net employs a conventional encoder-decoder architecture with a
Transformer module in the middle. The Transformer module
uses a rotate-and-flip layer to better calculate the similarity
between two patches in a slice to leverage similar patterns of
geometrical and texture features within brain structures. In
addition, a deep supervision module and squeeze-and-excitation
blocks are introduced to incorporate boundary information of
brain structures. Compared with state-of-the-art deep learning
algorithms, TW-Net outperforms these methods for multiple-label
tasks in 2D and 2.5D configurations on two independent public
datasets, demonstrating that TW-Net is a promising method for
neonatal brain MRI segmentation.

Index Terms—Neonatal brain, segmentation, Transformer,
magnetic resonance imaging (MRI)

I. INTRODUCTION

THE newborn period is critical for the development of
cognition and motor functions. It has been reported

that neurodevelopmental disorders are closely associated with
the development of neonatal brain tissues [1]–[5]. Magnetic
resonance imaging (MRI) is a noninvasive method that en-
ables the observation of early brain development [6]. The

This work was supported in part by grants from the National Natural
Science Foundation of China (81873893,82171903,92043301), Shanghai Mu-
nicipal Science and Technology Major Project (2018SHZDZX01), and the
Office of Global Partnerships (Key Projects Development Fund) at Fudan
University. (Corresponding author : Dinggang Shen and Xiao-Yong Zhang)

S. Zhang, Z. Yu, H. Yang, X. Han, X. Chen and X-Y. Zhang are with
the Institute of Science and Technology for Brain-Inspired Intelligence,
Fudan University, Shanghai, China. MOE Key Laboratory of Computa-
tional Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers
Center for Brain Science, Fudan University, Shanghai, China. (email: xiaoy-
ong zhang@fudan.edu.cn)

B. Ren is with the Department of School of Cyber Science and Technology,
Beihang University, Beijing, China.

Y. Zhou is with the School of Data Science, Fudan University, Shanghai,
China. (e-mail:yuanzhou@fudan.edu.cn)

D. Shen is with School of Biomedical Engineering, ShanghaiTech Univer-
sity, Shanghai 201210, China. He is also with Shanghai United Imaging Intelli-
gence Co., Ltd., Shanghai 200230, China, and Shanghai Clinical Research and
Trial Center, Shanghai, 201210, China. (e-mail: Dinggang.Shen@gmail.com)

The first two authors contribute equally to this work.

segmentation of the brain MRI plays an important role for
quantitative measurement of regional brain structures. Manual
segmentation is not only a time-consuming task [7], but also an
expertise-demanding task. Therefore, automatic segmentation
of neonatal brain MRI is vital for understanding the develop-
mental trajectories of brain maturation.

Many signal intensity-based studies have been conducted
to automatically segment three main different tissue classes,
including white matter (WM), gray matter (GM), and cere-
brospinal fluid (CSF), based on the fact that these tissues
show different intensities in MRI images. However, many
brain structures are formed during the newborn period, and
share a similar intensity distribution in MRI images (Fig. S1),
resulting in a challenging task to segment brain structures
based on intensity threshold.

Deep learning (DL) methods — in particular convolutional
networks such as fully convolutional networks (FCN) [8] and
U-Net [9] — have been demonstrated to be promising for
segmenting brain structures, overcoming the main drawback of
intensity-based methods. Numerous forms of U-Net have been
proposed to improve segmentation results [10]–[15]. However,
it is still a difficult task for these methods to reliably segment
newborn brain MRI due to the following reasons: 1) long-
range dependence information is lost; 2) simple feature maps’
concatenation cannot leverage enough boundary information
from encoder blocks [16].

To address these issues, we present a Transformer-weighted
network (TW-Net) for the segmentation of multiple neonatal
brain structures, including WM, GM, CSF, brainstem, cere-
bellum, hippocampus, deep gray matter, and ventricle. The
proposed TW-Net employs a conventional encoder-decoder
architecture with a Transformer module in the middle. The
Transformer module divides the feature maps from the encoder
into multiple patches to combine the high-level information.
Specifically, the architecture has the following features.

First, we introduce a Transformer module to capture long-
range dependence information. In the Transformer module,
we employ a rotate-and-flip (RF) layer that rotates and flips
the patches prior to feeding them to the self-attention mecha-
nism.The capability of the self-attention mechanism relies on
the similarity calculation of input patches. The RF layer en-
hances the similar patterns of geometrical and texture features
[17], and hence improves the similarity calculation. Second,
we introduce squeeze-and-excitation (SE) blocks and a deep
supervision module for leveraging boundary information. The
SE block is used to aggregate the outputs of decoders with
multiple scales. The deep supervision module uses the low-
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level encoder features with multi-scale decoder features to
improve the final segmentation results.

The network architecture is implemented in 2D and 2.5D
configurations. We concatenate three slices as input and call it
a 2.5D configuration [18], [19]. The proposed method in 2D
and 2.5D configurations is evaluated on the multi-structure
segmentation task, which aims to segment all the brain re-
gions from input slices simultaneously instead of dividing the
segmentation tasks into multiple tasks that each task aims to
segment one label.

II. RELATED WORK

There are two kinds of work that are most related to our
work: CNN-based models and Transformer-based models.

A. Deep Convolutional Models

Since CNNs are capable of performing pixel-wise prediction
by automatically extracting features using trainable filters,
numerous works — such as U-Net [9], U-Net++ [10], Dense-
Net [20] and PSP-Net [21] — employ a multi-path technique
based on convolutional operators to extract features at various
levels and contextual information. SegNet [22] is similar to
U-Net, which leverages pooling indices to conduct feature
mapping and achieves promising results. To enhance the
performance of convolutional approaches, several algorithms
combine convolution with linear layers or a recurrent mecha-
nism to create new architectures. Conv-LSTM [23] optimizes
performance by utilizing a long short term memory (LSTM).
Deeplabv3+ [24] merges features at several levels using depth-
wise convolution and the standard batch normalization (BN)
technique. Additionally, (FCN) [8] enables a flexible patch
size and sophisticated prediction by utilizing convolutional
operators. To address the problem of fuzzy boundary, Zhang
et al. [25] developed an edge-enhanced network that made
use of edge attention to collect edge information from the U-
Net encoder. To learn the multi-scale information of encoders,
a module for weighted aggressiveness was incorporated to
communicate boundary information from the encoder to the
decoder.

In summary, the segmentation performance of deep convo-
lutional models suffers from the local receptive field, which
hinders the extraction of long-range dependence information
from the whole brain structure. To boost the segmentation per-
formance, these models usually rely on increasing the number
of convolutional layers. The performance improvement by this
operation is limited by the local nature of convolutional layers.
Hence, a model with a stronger representation capability is
required.

B. Transformer-based Models

It was recently established that Vision Transformer (ViT)
[26] could achieve the same performance as CNN in down-
stream jobs. ViT applies Transformer directly to full-size
images via the global self-attention mechanism. Inspired by
Transformer’s long-range dependency, some adjustments have

been performed to make it suitable for medical image seg-
mentation. TransUNet [27], for example, connects 12 Trans-
former layers to handle the convolutional encoder’s high-
level features. TransBTS [28] utilizes three-dimensional con-
volutional filters to capture local three-dimensional contextual
information. Swin-UNet [29] replaces the convolution-based
backbones with a pure Transformer operation. ViT improves
segmentation performance by computing the similarity be-
tween two random patches extracted from MRI slices [30],
which has been shown to be very effective for medical image
segmentation. Despite the superior performance, transformer-
based methods are constrained by the memory available on the
GPUs [31], which hinders the application of three-dimensional
strategies and in turn results in a loss of information across
adjacent MRI slices. Note that both the simple Transformer-
Convolution stack and the pure Transformer only models
conduct point-to-point matrix calculation [32]. Thus, the post-
processing of the patch matrix is of great importance to the
segmentation task.

In summary, Transformer-based models only provide the
insight that self-attention calculation could increase the seg-
mentation performance in general. However, these models are
not designed to handle our task — neonatal brain segmentation
— which features low contrast across regions in MRI slices.
In conclusion, a task-specific network consisting of convolu-
tional layers and Transformer blocks is expected to solve our
problem.

III. METHODS

To solve the aforementioned problems, we design the TW-
Net with a deep supervision module to extract the boundary
information, which helps improve the representation capability
of the model. Moreover, we convey the boundary information
extracted from the first two layers from the encoder to the
decoder, enhancing the feature fusion without leveraging too
many convolutional layers. In addition, the Transformer block
benefits the capture of long-range dependence information,
which is significant for capturing the complete structure
of brain regions Many brain regions (e.g., GM) are global
structures instead of only occupying a small proportion of
the MRI slice. We present TW-Net in details, including the
image pre-processing, its network architecture in 2D and 2.5D
configurations, and a hybrid loss function.

A. Network Architecture for 2D/2.5D TW-Net

Fig. 1 illustrates the architecture of our proposed TW-Net,
which consists of an encoder-decoder convolutional network,
with a deep supervision module [33] in the encoder process
and SE blocks [34] in the decoder process. A Transformer
module is appended at the end of the CNN encoder. The
module divides the output of the encoder into several patches
and calculates their similarities. We design a RF-layer [35]
to rotate and flip the patches for better similarity calculation.
Due to the fact that the computational complexity of the
Transformer is quadratic with respect to the number of the
patches [36], [37], we take a down-sampling strategy to reduce
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Transformer Layer

Skip-Connection

Conv 3x3 + BN + ReLU + Maxpooling

Deconvolution

Feature Concatenation

Conv 1x1

Element-wise Addition

PE Position Embedding

Prediction Map

Deep Supervision module

Feature maps

Fig. 1: The overview of the proposed TW-Net. It includes a main network (encoder-decoder with skip connection), an additional
network stream (deep supervision module). The bottleneck contains a RF-layer, which rotates or flips the embedded patches
before feeding them to the Transformer block. The deep supervision module (in green) is implemented to capture the boundary
information and transport it to the decoder blocks

the size of the feature maps from the encoder, hence reduce
the length of the patch sequence .

The Transformer module processes the high-level features
while keeping the dimension. We upsample the output of the
Transformer, hence the feature maps are reshaped to the same
size as the second last layer of the encoder. To generate the
segmentation results with the same size of the input, three
CNN decoders are introduced to conduct feature upsampling
operation. Cascaded upsampling is utilized to recover a full
resolution segmentation result. In addition, skip-connection
is employed to concatenate the features from the encoder
and those from the corresponding decoder to create a finer
segmentation result.

1) Encoder design: We down-sample the input slice with
convolutional blocks. Let x ∈ RW×H×3 be an input slice

with two adjacent slices. The encoder e : RW×H×3 →
RW (4)×H(4)×C(4)

consists of several convolutional blocks,

e = e(4) ◦ e(3) ◦ e(2) ◦ e(1).

Each convolutional block e(i) : RW (i−1)×H(i−1)×C(i−1) →
RW (i)×H(i)×C(i)

(W (0) = W,H(0) = H,C(0) = 3) consists
of a 3×3 convolutional kernel, batch normalization, ReLU ac-
tivation, and a max pooling layer with stride being 2. Hence the
height H(0) and width W (0) are reduced to H(4) = H(0)/16
and W (4) = W (0)/16 after 4 convolutional blocks. We denote
the output of the encoder by x(4), i.e. x(4) = e(x).

We adopt a 2.5D configuration for the encoder, which uses
a 3D kernel at the first block (e(1)) followed by several
2D convolutional blocks ({e(i) : i = 2, 3, 4}) [38]. Since
the adjacent image slices in a MRI volume contain strong
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correlative spatial features, this strategy helps capture the
spatial information without using 3D convolution excessively.
After the 3D convolution, we employ a 1 × 1 convolution to
generate feature maps with size of H(1) ×W (1) × C(1).

2) Transformer with Rotation-Flip and Patch Embedding:
Let x(4) ∈ RH(4)×W (4)×C(4)

represent the feature map out-
put from the encoder. The Transformer module first divides
x(4) into a sequence of 2D patches {x̂i : i = 1, . . . , N},
where x̂i ∈ RP×P and N = H(4)×W (4)

P 2 × C(4) is the
number of patches. The patches are input into a RF layer
fRF : RP×P → RP×P to create symmetric features. This
layer produces rotated and flipped versions of x̂i for the
Transformer. As shown in Fig. 2, the rotation takes the integral
multiple of 90◦ into consideration. In the implementation, each
input patch x̂i is convolved with 8 filters (4 rotation filters
and 4 flipping filters) to produce a 8-channel feature map
[39]. Since the Transformer calculates the similarity between
elements of a sequence, the RF-layer is used to enhance the
capture of long-range dependence information. A max-pooling
across 8 channels is used afterwards to produce the output of
the RF-layer. We denote the output of this layer as fRF(x̂i).

rotate flip
convolution

max-pooling

patch output 

patch input 

Fig. 2: Illustration of the RF-layer employed in our TW-Net.
The first row is the input feature map. The second row shows
the 4 rotation and the 4 flipping filters. By convolving the
input feature map with the 8 filters, we get 8 different feature
maps in the third row. These 8 feature maps are combined to
derive the output through a max-pooling procedure.

Through a linear projection, we could map the patches into
a d-dimensional embedding space. Positional embedding from
[40] is employed to incorporate the spatial information. The
aforementioned process is formulated as follows:

z(0) = fPE(x̃1, . . . , x̃N ) = [x̃1E; x̃2E; ...; x̃NE] + Epos. (1)

where E ∈ RP 2×d is the patch embedding projection (d =
P 2), and Epos ∈ RN×d denotes the position embedding (d
copies of the same position column vector). x̃i ∈ R1×P 2

is
the flattened and transposed version of fRF(x̂i). The output
z(0) has a size of N × d.

The Transformer block fT : RN×d → RN×d consists of L
(L = 6 by default) layers of multi-head self-attention (MSA)
[41] and multi-layer perceptron (MLP) operations. After the

Conv 1x1

global 
pooling
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C
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C
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Fig. 3: Illustration of the strategy of a SE block. The global
average pooling is first employed to aggregate the global con-
text information, which is followed by two 1×1 convolutional
layers with a Sigmoid activation function to create a weight
for each channel. After that, these weights are multiplied with
the feature maps to obtain more representative features.

stack of l− 1 Transformer layers, the output of the l-th layer
could be computed as follows:

z(l− 1
2 ) = MSA(LN(z(l−1))) + z(l−1) (2)

z(l) = MLP (LN(z(l− 1
2 ))) + z(l− 1

2 ) (3)

where LN(·) represents the layer normalization operation and
z(l) denotes the output of the l-th Transformer layer. The
output of the Transformer block is reshaped to a tensor of
size W (4) ×H(4) × C(4) before feeding it into the decoder.

In summary, the Transformer module is composed by

fTM = fT ◦ fPE ◦ fRF , (4)

where fRF (x(4)) = (fRF (x̂1), ..., fRF (x̂N )).
3) Decoder design and SE block: The CNN decoder d :

RW (4)×H(4)×C(4) → RW (1)×H(1)×C(1)

consists of 3 deconvo-
lutional blocks,

d = d(3) ◦ d(2) ◦ d(1),

each block d(i) : RW (i)×H(i)×C(i) → RW (i−1)×H(i−1)×C(i−1)

consists of a deconvolutional layer followed by a ReLU
activation. The output feature maps of a block are also input
into a Squeeze-and-Excitation (SE) block. The SE operation
calculates a weight for each channel and multiples the feature
map of each channel by this weight to produce weighted
feature maps, as shown in Fig. 3. Specifically, global average
pooling is first utilized to capture the global context informa-
tion of the feature maps of the decoder block. Then the feature
maps go through two 1×1 convolutional layers with Sigmoid
as activation function [42]. These operations are designed to
evaluate the channel relevance and generate a weight for each
channel. Then the input feature maps are multiplied by the
weights to produce an output. In summary, this operation
can be seen as a channel-wise attention mechanism. We
aggregate the multi-scale information from the decoder blocks
by concatenating the (up-sampled) outputs from the SE blocks.
The combination of the decoder and the SE blocks outputs a
tensor of size W (1) ×H(1) × 2C(1).
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4) Deep supervision module: As shown in Fig. 1, the
green region denotes the deep supervision module fDS :

RW (1)×H(1)×C(1) × RW (2)×H(2)×C(2) → RW (1)×H(1)×2C(1)

,
which is leveraged to extract the boundary information during
segmentation. According to the previous research [25], [43],
low-level features contain sufficient boundary information.
Thus we select feature maps from the first two encoder blocks
to provide the fused feature map with fine-grained constraints.
In the deep supervision block, the feature maps from the
second encoder block are upsampled to the same size as the
first encoder block. And they are both fed to the 1 × 1 and
3× 3 convolution layers. After convolution, the concatenated
feature maps are applied to guide the boundary segmentation
in the decoding path.

The output of the deep supervision block is added to
the output of the SE block of the decoder. Then 3 × 3
deconvolution and 1×1 convolution are employed to generate
the prediction map.

B. Hybrid Loss Function
We design a hybrid loss to effectively train our proposed

TW-Net, which consists of a First-Order Gradient (FOG)
loss [44], a topological loss [45], and a segmentation loss to
constrain the geometry and feature balance.

1) First Order Gradient (FOG) loss: Let s(x) ∈ RW×H×C

denote the output probability map given input x and g ∈
RW×H×C denote ground truth, and C is the number of classes,
v = (vx, vy, vz) ∈ Ω represents the spatial position vector
and Ω ⊂ R3 is the image domain. Then we could apply
a 3D geometric loss that constrains the gradients between
the predicted map and ground truth to be similar, where the
gradient is denoted by ∇s(x)v = [

(
∂

∂vx
, ∂
∂vy

, ∂
∂vz

)
s(x)]v .

Since s(x) corresponds to a single slice, the derivative w.r.t.
the z-axis is calculated by find its adjacent slices. The FOG
loss is defined as follows:

LFOG(x) =
1

|Ω|
∑
v∈Ω

‖∇s(x)v −∇gv‖2 (5)

2) Topological Loss: To balance the feature map between
encoders and decoders, we employ a topological loss [45] to
bring it closer to that desired topology. The loss is defined as
follows:

LTopo(x) =

Le∑
l=1

(1− ‖fp(x(l))− x(Le)‖2)+

Le+Ld∑
l=Le+1

‖fup(x(l))− x(Le+Ld)‖2
(6)

where fp and fup stand for maxpooling and uppooling respec-
tively (such that the sizes are compatible), Le / Ld denotes
the number of encoder / decoder blocks, and x(l) / x(Le+l)

represents the output of the lth encoder / decoder block, i.e.

x(l) = (e(l) ◦ · · · ◦ e(1))(x) (7)

x(Le+l) = (d(l) ◦ · · · ◦ d(1) ◦ fTM ◦ e)(x) (8)

As one feature map will go through 4 encoder blocks and
3 decoder blocks, the weights among all levels should be
balanced for more representative features.

3) Total Loss: The main loss term targets at minimizing the
distance between the prediction and the corresponding ground
truth, which is defined as:

LSeg(x) = − 1

Ω

∑
v∈Ω

(gv log (s(x)v) + (1− gv) log (1− s(x)v))

(9)
Finally, the total loss L is a weighted combination of the three
loss terms:

L = Ex∼D [LSeg(x) + λ1LFOG(x) + λ2LTopo(x)] (10)

where D represents the empirical distribution of the dataset.
λ1 and λ2 are the hyper-parameters. (tuned manually and set
to λ1 = 0.1 and λ2 = 0.01 for the hybrid loss function).

IV. EXPERIMENT AND RESULTS

A. Datasets

1) dHCP: The anatomical MRI data were obtained from
a publicly available cohort, the developing Human Connec-
tome Project (dHCP, http://www.developingconnectome.org/),
which was approved by the National Research Ethics Com-
mittee and informed written consent given by the parents
of all participants. The T2w images were acquired on a 3T
Philips Scanner with a dedicated neonatal imaging system
with resolution 0.8 × 0.8 × 1.6mm3 [46]. All MRI data
was processed with motion correction and resampled to an
isotropic voxel size of 0.5mm3. Then the dHCP dataset was
rigidly registered to a 40 week atlas space by the MIRTK tool-
box (https://mirtk.github.io/). Skull-stripping was performed
using Draw-EM pipeline for automatic brain MRI segmen-
tation. Nine labels (GM, WM, CSF, background, ventricle,
cerebellum, dGM, brainstem, hippocampus) were used for the
segmentation. 41 subjects with more than 9,000 MRI slices
(images) were included. To train our models, we take 75% of
the dataset for training, and 25% for test.

2) iSeg-2017: The MRI (T1-weighted) data were chosen
from the pilot study of Baby Connectome Project
(http://babyconnectomeproject.org). For each image, 144 sagit-
tal slices were acquired with parameters: TR/TE = 1900/4.38
ms with flip angle = 7◦. The spatial resolution is 1×1×1mm3.
A Siemens head-only 3T scanner with a circular polarized
head coil is used for data acquisition. Three labels (WM, GM,
CSF) were used for the segmentation and 3D volumes of 10
subjects were trained by 4-fold cross validation for a cross-
dataset validation.

B. Implementation Details

Our model is implemented in PyTorch and accelerated by 4
NVIDIA 1080Ti GPU and 4 NVIDIA V-100 GPU. Our code is
released in (https://github.com/jerryzhang1119). We describe
the implemented details as follows:

1) Network Parameter Setting: All the input MRI slices
are cropped to 128× 128 and the kernel size is set to 3×3 in
normal convolution operations. The batch size for training is
set to 4 and the maximum iteration number is 300. In addition,
we set the learning rate to 5e-3 without any weight decay. The
pooling stride is set to 2 by default. We set the scheduler power
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to 0.9 and the stride is set to 2. The vision transformer has
four heads with 6 layers. The dimension of the linear layer
is 1024. λ1 is set to 0.1 and λ2 is set to 0.01 for the hybrid
loss function. We search λ1 from {0.1, 0.2, 0.3, 0.4, 0.5}
and λ2 from {0.01, 0.05, 0.1}. We observe the descent speed
of Dice coefficient in the initial 50 epochs, and choose the
regularization coefficients.

2) Slice Processing: Our pre-training procedure consists of
four sections: (1) Randomly shuffle the image slices and divide
them into 5 folds, which helps avoid the potential influence of
dataset split bias. (2) Randomly extract 2/3 of all slices with
9 labels. (3) Crop the MRI slice to the fixed size 128×128.
(4) Keep all slices of each sample volume to be either in the
training set or in the testing set.

C. Evaluation Metrics

There are two segmentation tasks in our research (2D
segmentation and 2.5D segmentation). We choose the Dice
coefficient (DC), the 95th-percentile of the Hausdorff Distance
(HD95) to evaluate the segmentation results. The Dice coef-
ficient measures the overlap between the segmented region
and the ground truth region for a class. The performance of
segmentation is positively correlated with the Dice coefficient.

The Kth-percentile (K = 95) of the Hausdorff Distance
(HD95) is another metric that evaluates the distance between
segmented region and the corresponding ground truth region.
Given two regions, it calculates the distance between the
second region and each voxel in the first region, and takes the
largest 95th percentile distance. Then, the same calculation
is repeated with the two regions switched to get another
95th percentile distance. The maximum between these two
distances is taken as the final measure between the two
regions. Different from the Dice coefficient, the HD95 metric
is negatively correlated with the segmentation performance.

TABLE I: Summary of all trained methods with the corre-
sponding parameters, flops, training time and testing time.

Method Parameters Flops Training time Testing time
U-Net 34.53M 16375.23M 89s/epoch 14ms/slice

U-Net++ 36.63M 34656.76M 124s/epoch 26ms/slice
DenseNet 39.44M 31525.33M 298s/epoch 80ms/slice

SegNet 51.95M 41425.55M 354s/epoch 380ms/slice
Deeplabv3+ 41.25M 41663.09M 112s/epoch 40ms/slice

FCN 32.96M 26535.69M 138s/epoch 110ms/slice
PSP-Net 35.31M 18760.24M 187s/epoch 140ms/slice

TransUNet 30.08M 5793.23M 180s/epoch 42ms/slice
TW-Net 30.09M 5809.60M 204s/epoch 45ms/slice

D. Comparison with 2D state-of-the-art approaches

We train other 2D state-of-the-art methods to segment the
aforementioned tissues simultaneously by introducing cross-
entrophy as the loss function. The algorithms used in our
experiment are listed in Table I with the corresponding number
of parameters, Flops, training time per epoch and testing
time per slice. Parameter of algorithms could influence the
segmentation performance as low-resolution images (the size
of input slices) may benefit from the shadow segmentation
networks. However, the number of labels in our segmentation

task exceeds traditional segmentation tasks and some labels
only occur in a few slices. Thus a deeper network with more
parameters is suitable for complex tasks (e.g. multiple and
imbalanced labels). It is difficult to find the optimal parameter
of the specific algorithm. To assure a fair comparison, the
close parameter of all methods without changing original
backbones too much is suggested. Due to the fact that cere-
bellum, brainstem and hippocampus take a small proportion
of labels, some algorithms fail to segment them. We replace
the result with ’−’. Table II reports the results with 95%
confidence intervals of nine different methods with respect
to two evaluation metrics. We could observe that TW-Net
achieves better segmentation in all brain tissues except deep
gray matter, indicating that the proposed architecture in gen-
eral outperforms other models in this 2D segmentation task.
We select three slices uniformly from top to bottom in the axial
plane to show the advantages of our model. The visualization
of the segmentation results and the corresponding error maps
are shown in Fig. 4, in which over-segmentation and under-
segmentation are highlighted in red. We select the #55, #75,
and #95 slices for error maps visualization. We observe that
the proposed method is capable of accurately segmenting
small brain regions such as hippocampus and brainstem. In
addition, the error of our method is the lowest among all the
nine approaches. As shown in Fig. S2, our method outper-
forms competing methods in segmentation accuracy for most
brain structures in 2D experiments. However, TW-Net fails
to outperform some methods (e.g. U-Net) when segmenting
dGM. The focus of TW-Net has been allocated to each label
uniformly, such as cerebellum, and brainstem, while U-Net
may allocate more focus to dGM, ignoring the segmentation
performance of cerebellum, brainstem, and hippocampus. This
may account for the inferior performance of TW-Net when
segmenting dGM.

1) Ablation Study for SE and Deep supervision module:
We perform ablation studies to validate our deep supervision
and squeeze-and-excitation (SE) module. In this section, we
remove the deep supervision module and the SE module and
compare the performances.

To explore the contribution of the deep supervision mod-
ule, we derive two baselines: backbone only (TW-Net w/o
SEDS) and backbone without the deep supervision module
incorporated (TW-Net w/o DS : our method without the deep
supervision module but with SE blocks). The results in Table
II clearly show that deep supervision block is necessary for
boosting the segmentation performance of deep gray matter,
white matter, CSF, and hippocampus. The Dice score increases
9.6%, 3.8%, 2.6%, 9.9%, respectively. Moreover, as shown
in Fig. S3, we present feature maps of four slices from one
subject to illustrate the effectiveness of DS module, which
benefits the extraction of boundary information.

We also investigate the importance of SE block. From Table
II, we observe that backbone with SE block increases the
backbone performance in terms of Dice and HD95 in all
tissues except ventricle. Specifically, the Dice score increases
3.0% and 9.1% for white matter and deep gray matter, re-
spectively. Moreover, the cerebellum and hippocampus cannot
be segmented from backbone while SE block could address
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GT         UNet UNet++       FCN    deeplabv3+   DenseNet SegNet PSPNet TransUnet TW-Net

RMSE          0.328           0.342           0.350            0.343         0.472          0.393           0.358           0.348            0.325                         

Fig. 4: Comparisons between the automated segmentation of the state-of-the-art approaches and our proposed TW-Net in 2D
configuration. Odd rows and even rows represent segmentation results and the corresponding error maps, respectively. We
replace the error maps of the ground truth with the original slice.

this problem. This suggests that introducing the SE block can
enable our model to accurately segment the minor brain tissues
and boost the segmentation performance comprehensively. By
this ablation study, we have demonstrated the significance of
the combination of Deep Supervision and SE block.

As shown in Table II, our TW-Net performs better than any
other settings in terms of Dice score and HD95. These im-
provements demonstrate that Deep Supervision block together
with SE block are the two central components responsible for
the good performance of our proposed TW-Net.

2) Sensitivity Analysis on Transformer Layers: To identify
the influence of Transformer layers, we conduct experiments
(training networks from scratch) when given 4, 6, 8, 10
Transformer layers for the TW-Net, respectively. This involves
evaluating every experiment on the validation set with the Dice
score and HD95. As shown in Fig. 5 and Fig. S4, we take U-
Net as baseline and observe that the Dice score and HD95
are over the baseline steadily, which shows the reliability of
our method. The model with 4 layers is more efficient and
the model with 6 layers is almost the worst. To prove the
robustness of our architecture, we use 6 in our experiments.
Fig. 5 highlights that the Transformer block greatly improves
the performance compared to the baseline. Except for deep

gray matter, our architecture performs the best in all other
tissues, suggesting the significance of incorporating long range
dependency information in the Transformer.

3) Ablation Study for RF-Layer: The RF-layer conducts
linear transformation of feature maps. To investigate the effect
of the RF-layer, we remove the RF-layer, and refer to it
as 0 conv-layer. In addition, we replace the RF-layer with
several scale-invariant convolutional layers (1×1 convolutional
layer without changing the size of feature map). We set the
number of convolutional layers from 1 to 5. The results are
shown in Fig. S5. It is observed that, with the number of
convolutional layers increasing, the general performance has
been improved until the number reaches 5, where the Dice
score declines significantly, which indicates the occurrence of
over-fitting. The TW-Net with the RF-layer and the TW-Net
with four convolutional layers achieve similar performance and
are noticeably better than the others.

4) Ablation Study for Transformer block: Transformer
block conducts token-similarity calculation to enhance the
representation capability. To investigate the effectiveness of the
whole block, we replace the Transformer block with several
1× 1 convolutional layer. The number of convolutional layers
is set from 0 to 3. The results are presented in Fig. S6.
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TABLE II: Segmentation results (mean ± standard) by 5-fold cross-validation achieved using nine 2D methods, in terms of
Dice coefficient and HD95. The best results are marked in red. Some methods fail to predict the segmentation, which is marked
by ’-’. The mean performance is shown in the final column where ∗ represents the mean performance of segmented brain
regions instead of all brain regions. The results indicate that our proposed TW-Net is better than all other compared methods.

Methods Metric GM WM CSF Background Ventricle Cerebellum dGM Brainstem Hippocampus mean
U-Net 0.924±0.013 0.909±0.038 0.940±0.023 0.777±0.021 0.890±0.028 - 0.715±0.104 - - 0.859∗

U-Net++ 0.919±0.014 0.888±0.041 0.923±0.024 0.819±0.022 0.875±0.030 - 0.656±0.113 - 0.740±0.113 0.831∗
Deeplabv3+ 0.916±0.011 0.868±0.060 0.909±0.037 0.828±0.023 0.900±0.026 - 0.662±0.115 0.790±0.110 0.786±0.142 0.832∗

SegNet 0.836±0.021 0.589±0.137 0.556±0.148 0.813±0.021 0.751±0.104 0.846±0.141 0.190±0.102 0.670±0.139 0.741±0.140 0.666∗
FCN 0.937±0.013 0.912±0.053 0.927±0.033 0.775±0.019 0.922±0.017 - 0.773±0.105 0.592±0.064 0.765±0.112 0.825∗

PSP-Net Dice 0.878±0.013 0.837±0.031 0.900±0.018 0.820±0.019 0.888±0.024 0.846±0.130 0.756±0.103 - 0.757±0.084 0.836∗
Dense-Net 0.807±0.013 0.716±0.023 0.824±0.007 0.595±0.153 0.539±0.096 0.846±0.130 0.273±0.079 0.670±0.220 0.740±0.192 0.668∗
TransUNet 0.935±0.012 0.904±0.033 0.932±0.020 0.798±0.022 0.922±0.017 - 0.566±0.113 0.680±0.122 0.773±0.115 0.814∗

TW-Net w/o SE 0.938±0.012 0.912±0.013 0.940±0.014 0.796±0.032 0.908±0.015 - 0.678±0.116 0.670±0.220 - 0.835
TW-Net w/o DS 0.939±0.012 0.910±0.015 0.935±0.014 0.794±0.043 0.912±0.014 0.831±0.111 0.673±0.118 0.715±0.120 0.788±0.130 0.833

TW-Net 0.940±0.012 0.917±0.011 0.942±0.014 0.862±0.015 0.930±0.013 0.856±0.082 0.679±0.115 0.798±0.107 0.819±0.105 0.860
U-Net 3.602±0.425 4.170±0.312 4.603±0.530 1.479±0.026 1.895±0.952 - 2.737±0.633 - - 3.697∗

U-Net++ 3.608±0.412 4.364±0.327 4.815±0.508 1.477±0.042 1.944±0.853 - 3.077±1.304 - 1.196±0.535 2.925∗
Deeplabv3+ 3.758±0.438 4.662±0.492 5.158±1.034 1.456±0.571 1.840±0.848 - 2.996±1.945 1.273±0.311 1.066±0.622 2.776∗

SegNet 3.898±0.425 4.662±0.294 6.970±1.301 2.003±0.057 2.073±0.704 3.620±0.132 4.996±1.835 1.630±0.691 1.466±0.506 3.478∗
FCN 3.375±0.474 4.225±0.562 4.600±0.865 1.462±0.057 1.850±0.903 - 2.639±0.435 1.880±0.299 0.998±0.295 2.629∗

PSP-Net HD95 4.286±0.337 4.978±0.212 4.972±0.470 1.587±0.391 1.909±0.942 3.027±0.686 2.695±0.743 - 2.480±0.875 3.242∗
Dense-Net 5.691±0.808 6.835±1.028 7.047±1.023 1.489±0.038 4.598±1.602 3.027±0.686 5.333±1.559 1.625±0.670 1.196±0.515 4.093∗
TransUNet 3.371±0.428 4.407±0.289 4.769±0.524 1.472±0.031 1.807±1.036 - 3.601±0.710 1.620±0.625 1.093±0.520 2.768∗

TW-Net w/o SE 3.375±0.512 4.332±0.295 4.710±0.526 1.463±0.044 1.820±0.360 - 3.357±1.080 1.445±0.623 - 2.929
TW-Net w/o DS 3.372±0.422 4.347±0.303 4.712±0.526 1.477±0.035 1.804±0.351 3.552±0.710 3.361±1.104 1.414±0.522 1.056±0.509 2.788

TW-Net 3.369±0.312 4.135±0.196 4.550±0.422 1.453±0.034 1.750±0.322 2.836±0.646 3.116±1.108 1.183±0.116 0.972±0.313 2.596

TW-Net FCN U-Net

Fig. 5: Sensitivity analysis on Transformer layers using Dice illustrates that Transformer block enhances the network
performance, which is independent of the number of Transformer layers. The x-axis represent the number of Transformer
layers. We compare our methods with two baselines (FCN and U-Net). The labels not segmented are not shown in the figure.
(FCN fails to segment cerebellum, UNet fails to segment cerebellum, brainstem and hippocampus).

We could observe that, with the number of convolutional
layers increasing, the segmentation performance declines sig-
nificantly. The conclusion could be drawn that the Transformer
block takes the important position that couldn’t be replaced
by traditional convolutional layers. The worse performance
of convolutional layers indicates that deeper convolutional
layers aren’t applicable in complex tasks, which requires
improvement of the representation of the model.

E. Segmentation Results in 2.5D Configuration

As two-dimensional slices lack spatial information along
the z-axis, we incorporate this information into TW-Net by
concatenating three adjacent image slices and then using a
3D convolutional layer followed by several 2D layers. We

implemented this strategy for all the methods and reran the
experiment. The results are shown in Table III.

From Table II and Table III, we observe that with the
spatial information from adjacent slices, most of the 2.5D
approaches boost the segmentation performance significantly
when compared with the corresponding 2D approaches, which
demonstrates the significance of using this information.

As shown in Fig. 6 and Table III, comparing with state-
of-the-art approaches, our proposed method consistently out-
performs other methods in 2.5D segmentation for all brain
structures except for the region of dGM in terms of error
maps, Dice coefficient, and HD95. For instance, for white
matter and background segmentation, our method achieves an
improvement of 4.2% and 4.1% respectively (in terms of Dice
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GT         UNet UNet++       FCN    deeplabv3+   DenseNet SegNet PSPNet TransUnet TW-Net

RMSE          0.348            0.338           0.330            0.342           0.485            0.376           0.388       0.345            0.320                         

Fig. 6: Comparisons between the automated segmentation of the state-of-the-art approaches and our proposed TW-Net in 2.5D
configuration. Odd rows and even rows represent segmentation results and the corresponding error maps, respectively. We
replace the error maps of ground truth with the original slice.

coefficient) compared with the second-best result achieved by
U-Net++. In addition, our method shows better segmentation
accuracy for most brain structures in 2D experiments (Fig. 4).
These results further prove the effectiveness of the TW-Net
for neonatal brain segmentation.

F. Segmentation Results of our methods compared with 3D
baselines

To investigate the effectiveness of our proposed TW-Net,
we compare our 2D and 2.5D method with 3D segmentation
algorithms 3D U-Net, 3D U-Net++, and TransBTS. As shown
in Fig. 7 , our methods in 2D and 2.5D configurations both
outperformed 3D U-Net and 3D U-Net++ steadily in terms
of the Dice coefficient, even though our methods do not
have the full slice information as the 3D algorithms. We
could observe that TransBTS share a similar performance with
2D TW-Net and could segment all the labels as well. We
could draw the conclusion that convolutional neural networks
implemented with a Transformer block could outperform other
convolutional networks in 2D and 3D configurations.

G. Segmentation results on iSeg-2017 dataset

To further investigate the generalizability of the proposed
TW-Net, we compare our models on the iSeg-2017 dataset.
Experimental results on iSeg-2017 are summarized in Table
IV. We could observe that TW-Net yields the best segmentation
performance in terms of Dice coefficient and HD95 when
compared with the other competing methods in 2D and 2.5D
configurations. For example, TW-Net significantly improves
the previous state-of-the-art method (TransUNet 2D) by 2.3%
and 0.54 in terms of Dice and HD95, respectively. Also,
TW-Net dramatically improves the baseline (U-Net) from
77.82% to 86.45% in a 2D configuration. Such improvements
demonstrate the effectiveness of our model in learning the
intrinsic features independent of data sources, as well as
accurately identifying the brain regions in low-contrast MRI
slices. In addition, it is observed that the TW-Net in a 2.5D
configuration outperforms the TW-Net in a 2D configuration
in three classes.

H. Ablation Study for Hybrid Loss Function

To explore the effectiveness of the proposed hybrid loss
function, we conduct ablation study on both 2D and 2.5D
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TABLE III: Segmentation results (mean ± standard) by 5-fold cross-validation achieved using nine 2.5D methods, in terms
of Dice coefficient and HD95. The best results are marked in red. Some methods fail to predict the segmentation, which is
marked by ‘-’. The mean performance is shown in the final column where ∗ represents the mean performance of segmented
brain regions instead of all brain regions. The results indicate that our proposed TW-Net is better than all other methods.

Method Metric GM WM CSF Background Ventricle Cerebellum dGM Brainstem Hippocampus mean
U-Net 0.868±0.021 0.896±0.028 0.858±0.097 0.695±0.125 0.924±0.013 - 0.707±0.115 - - 0.779∗

U-Net++ 0.939±0.012 0.905±0.031 0.904±0.024 0.817±0.032 0.908±0.032 - 0.786±0.108 - 0.741±0.103 0.857∗
Deeplabv3+ 0.927±0.007 0.906±0.034 0.936±0.026 0.847±0.016 0.926±0.012 0.846±0.135 0.775±0.093 0.671±0.022 - 0.854∗

SegNet 0.922±0.019 0.892±0.091 0.918±0.044 0.878±0.054 0.731±0.126 0.846±0.130 0.514±0.143 0.670±0.220 - 0.796∗
FCN 0.934±0.014 0.924±0.054 0.945±0.041 0.789±0.015 0.915±0.021 0.845±0.131 0.768±0.108 0.666±0.108 - 0.848∗

PSP-Net Dice 0.874±0.014 0.845±0.025 0.901±0.022 0.886±0.030 0.881±0.030 0.846±0.130 0.734±0.108 0.656±0.092 - 0.828∗
Dense-Net 0.809±0.057 0.740±0.265 0.832±0.078 0.594±0.014 0.156±0.013 0.846±0.130 0.410±0.141 0.670±0.221 0.741±0.192 0.644∗
TransUNet 0.873±0.016 0.896±0.025 0.884±0.041 0.800±0.032 0.918±0.017 - 0.786±0.111 - 0.741±0.125 0.843∗

TW-Net w/o SE 0.938±0.010 0.918±0.010 0.944±0.012 0.815±0.027 0.906±0.015 - 0.678±0.115 0.670±0.218 - 0.838
TW-Net w/o DS 0.939±0.012 0.910±0.015 0.935±0.014 0.794±0.043 0.912±0.014 0.831±0.111 0.673±0.118 0.665±0.120 0.788±0.130 0.827

TW-Net 0.956±0.012 0.948±0.023 0.961±0.014 0.888±0.015 0.945±0.014 0.846±0.108 0.769±0.015 0.675±0.019 0.887±0.081 0.875
U-Net 3.740±0.328 4.260±0.450 4.836±1.183 2.335±0.055 1.875±0.528 - 2.851±1.403 - - 3.316∗

U-Net++ 3.523±0.319 4.307±0.412 4.936±0.641 1.364±0.032 1.892±0.408 - 2.902±1.020 - 1.191±0.310 2.874∗
Deeplabv3+ 3.577±0.331 4.299±0.346 4.527±0.868 1.716±0.057 1.715±0.767 3.627±0.127 2.679±0.520 1.625±0.567 - 2.971∗

SegNet 3.664±0.552 4.449±0.573 5.067±1.226 1.605±0.026 1.974±0.961 3.270±0.686 3.146±0.617 1.645±0.537 - 3.103∗
FCN 3.521±0.592 4.394±0.559 4.266±1.063 1.790±0.057 1.887±1.015 3.688±0.687 2.637±2.552 1.502±0.781 - 2.961∗

PSP-Net HD95 4.321±0.317 4.958±0.214 4.948±0.514 2.113±0.375 1.933±1.012 3.276±0.686 2.778±1.964 2.406±0.976 - 3.342∗
Dense-Net 5.444±0.892 6.380±0.871 6.887±0.945 2.886±0.038 4.324±0.671 3.027±0.686 4.293±2.529 1.645±0.669 1.195±0.515 4.009∗
TransUNet 3.420±0.337 4.431±0.472 4.877±0.638 1.588±0.026 1.896±1.035 - 3.112±1.390 - 1.090±0.204 2.916∗

TW-Net w/o SE 3.371±0.500 4.330±0.283 4.706±0.513 1.460±0.042 1.815±0.350 - 3.352±1.004 1.423±0.620 - 2.922
TW-Net w/o DS 3.373±0.420 4.341±0.298 4.575±0.418 1.475±0.035 1.801±0.342 3.550±0.710 3.358±1.105 1.407±0.512 1.058±0.488 2.778

TW-Net 3.320±0.312 4.200±0.384 3.710±0.506 1.353±0.025 1.623±0.304 3.022±0.556 3.346±1.240 1.257±0.209 1.050±0.201 2.542

TABLE IV: Segmentation results (mean ± standard) by 4-fold cross-validation achieved using nine 2D and 2.5D methods,
in terms of Dice coefficient and HD95. The best results are marked in red. The results indicate that our proposed TW-Net is
better than all other methods.

Method Metric 2D configuration 2.5D configuration
WM GM CSF WM GM CSF

U-Net 77.82±1.56 80.49±1.27 83.57±0.89 78.18±1.52 82.33±1.38 84.50±0.88
U-Net++ 78.04±1.35 81.25±1.25 84.30±1.03 79.13±1.33 81.85±1.18 84.87±1.02

Deeplabv3+ 77.65±1.51 80.53±1.20 83.44±0.97 77.88±1.43 81.34±1.16 84.45±0.86
SegNet 73.19±2.13 76.44±1.98 80.36±1.25 73.15±2.15 76.46±1.93 81.32±1.24
FCN Dice 80.42±1.53 83.92±1.24 87.78±0.83 82.85±1.50 83.95±1.25 88.13±0.97

PSP-Net 80.04±1.42 82.73±1.05 86.63±0.82 81.15±1.40 82.90±1.05 86.92±0.80
Dense-Net 72.21±1.86 75.28±2.29 78.38±0.95 70.15±1.56 75.48±2.32 76.73±0.95
TransUNet 84.14±1.58 86.05±1.18 89.46±0.73 85.06±1.38 86.95±1.28 90.05±0.82

TW-Net 86.45±1.38 88.23±0.89 91.32±0.65 87.53±1.42 89.35±0.79 91.82±0.54
U-Net 8.52±1.48 7.63±1.40 10.35±1.26 8.44±1.51 7.57±1.64 10.22±1.18

U-Net++ 8.40±1.39 7.60±1.33 10.05±1.08 8.29±1.35 7.52±1.30 10.02±1.06
Deeplabv3+ 8.55±1.36 7.58±1.25 9.95±1.12 8.52±1.38 7.46±1.28 9.92±1.26

SegNet 9.21±1.28 9.63±1.06 10.25±1.14 9.23±1.24 9.60±1.08 10.14±1.28
FCN HD95 7.48±1.37 7.20±1.13 9.75±1.16 6.82±1.27 7.22±1.14 9.46±1.23

PSP-Net 7.61±1.25 7.35±1.14 9.68±0.92 7.48±1.24 7.30±1.12 9.65±0.95
Dense-Net 10.30±1.35 9.52±1.04 10.52±1.07 10.52±1.54 9.40±1.12 11.28±1.27
TransUNet 6.99±1.12 6.86±1.22 9.57±1.32 6.87±1.06 6.77±1.26 9.36±1.24

TW-Net 6.45±1.27 6.78±1.07 9.35±1.28 6.40±1.24 6.65±1.12 9.32±1.27

networks. As shown in Fig. 8, the FOG loss function and the
topology loss function improve the segmentation performance
in all brain tissues, and the combination of the two loss
functions achieve the best performance. We could also observe
that the FOG loss function outperforms the topology loss func-
tion when segmenting gray matter, background, cerebellum
and deep gray matter on both 2D and 2.5D tasks. And it
underperforms the topology loss function when segmenting
brainstem and hippocampus. Since brainstem and hippocam-
pus contain few labeled voxels, the topology loss function
may be beneficial to few-shot learning in medical image
segmentation.

V. CONCLUSION

We have developed a Transformer-weighted network com-
bining deep supervision and SE-block for neonatal brain tissue
segmentation. To make the network more suitable for neonatal
brain structure segmentation, we implement the network with

a RF-layer. An ablation study demonstrates the utility of
the deep supervision module, Transformer layer, SE-block,
and RF-layer. Then, we apply a 2.5D strategy that takes
advantage of spatial information in adjacent MRI slices. As
a result, our algorithm outperforms other models in 2D and
2.5D segmentation tasks when compared with other state-of-
the-art segmentation algorithms. Moreover, when compared
with several 3D baselines, TW-Net still leads the segmen-
tation performance in terms of Dice coefficient. In addition,
the segmentation performance of TW-Net on another dataset
(iSeg-2017) present the advantages in neonatal brain region
segmentation. Our automatic segmentation model could pro-
vide a effective way for segmenting multiple brain tissues
simultaneously, which benefits the subsequent tasks such as
neurodegenerative disease diagnosis and evaluation. Although
the proposed architecture has achieved promising performance
on two segmentation tasks, some limitations and future work
should still be considered: (1) A 2D network is utilized
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TW-Net (2D) TW-Net (2.5D) U-Net (3D) U-Net++ (3D) TransBTS

Fig. 7: Comparison with 3D baselines. We compare TW-Net in 2D and 2.5D configurations with several 3D baselines, including
3D U-Net, 3D U-Net++, and TransBTS. Some methods fail to predict the segmentation, which is not shown in this figure.

Fig. 8: Ablation study of the proposed hybrid loss function in
2D and 2.5D configurations. The first and second rows repre-
sent the TW-Net in 2D and 2.5D configurations, respectively.
‘w/o FOG’ means that the FOG loss function is not utilized
during the training process. Also, ‘w/o both’ means that there
is only the segmentation loss (cross entropy) when training
the TW-Net.

in our experiment, while 2D networks lose the 3D spatial
information. (2) The sample size used is not sufficient enough
for multiple brain structures’ segmentation and more samples
could improve our performance. In the future, we will explore
the 3D architecture with more samples for neonatal brain
segmentation.
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